Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29093, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38665562

ABSTRACT

Objective: Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results: A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions: SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.

2.
Pharmacol Res ; 178: 106188, 2022 04.
Article in English | MEDLINE | ID: mdl-35338002

ABSTRACT

Hyperbilirubinemia is a serious hazard to human health due to its neurotoxicity and lethality. So far, successful therapy for hyperbilirubinemia with fewer side effects is still lacking. In this study, we aimed to clarify the effects of oridonin (Ori), an active diterpenoid extracted from Rabdosia rubescens, on hyperbilirubinemia and revealed the underlying molecular mechanism in vivo and in vitro. Here, we showed that liver X receptor alpha (LXRα) deletion eliminated the protective effect of Ori on phenylhydrazine hydrochloride-induced hyperbilirubinemia mice, indicating that LXRα acted as a key target for Ori treatment of hyperbilirubinemia. Ori significantly increased the expression of LXRα and UDP-glucuronosyltransferase 1A1 (UGT1A1) in the liver of wild-type (WT) mice, which were lost in LXRα-/- mice. Ori or LXR agonist GW3965 also reduced lipopolysaccharide/D-galactosamine-induced hyperbilirubinemia via activating LXRα/UGT1A1 in WT mice. Liver UGT1A1 enzyme activity was elevated by Ori or GW3965 in WT mice. Further, Ori up-regulated LXRα gene expression, increased its nuclear translocation and stimulated UGT1A1 promoter activity in HepG2 cells. After silencing LXRα by siRNA, Ori-induced UGT1A1 expression was markedly reduced in HepG2 cells and primary mouse hepatocytes. Taken together, Ori stimulated the transcriptional activity of LXRα, resulting in the up-regulation of UGT1A1. Therefore, Ori or its analogs might have the potential to treat hyperbilirubinemia-related diseases through modulating LXRα-UGT1A1 signaling.


Subject(s)
Bilirubin , Hyperbilirubinemia , Animals , Diterpenes, Kaurane , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hyperbilirubinemia/chemically induced , Hyperbilirubinemia/drug therapy , Hyperbilirubinemia/genetics , Liver X Receptors , Mice
3.
Int Immunopharmacol ; 102: 108387, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34838489

ABSTRACT

BACKGROUND AND PURPOSE: Oridonin (Ori) has been shown to protect against acute liver injury (ALI) induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS). Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) and are key proinflammatory mediators. This study aimed to investigate the changes in oxylipins in the livers of mice with D-GalN/LPS-induced ALI and the effects of Ori on these changes. RESULTS: 54 oxylipins in liver tissues were identified and qualitatively and quantitatively analyzed by ultra-performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry (UPLC-QTRAP/MS/MS). The levels of 12-HETE, 12-HEPE, 14(S)-HDHA, PGE2, dihomo-γ-linolenic acid and 13-HOTrE in the liver were significantly increased in the D-GalN/LPS-induced ALI group compared with the control group, and the levels of EPA and 7-HDHA were significantly decreased. However, pretreatment with Ori dramatically decreased the levels of 12-HETE, 12-HEPE, 14(S)-HDHA, PGE2 and 13-HOTrE compared with those of the ALI group and induced 7-HDHA and 15-oxoETE. Moreover, Ori reduced the protein levels of COX-1, COX-2, ALOX5, ALOX12 and ALOX15 induced by D-GalN/LPS, indicating that Ori altered oxylipins through the COX and LOX pathways. CONCLUSIONS: These results suggest that the protective effect of Ori on ALI is partly mediated by affecting the oxylipin pathway.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Diterpenes, Kaurane/pharmacology , Galactosamine , Lipopolysaccharides , Liver/drug effects , Oxylipins/metabolism , Protective Agents/pharmacology , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Chemical and Drug Induced Liver Injury/genetics , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Liver/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
4.
J Med Chem ; 64(14): 9943-9959, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34251816

ABSTRACT

Reported as two antirenal cell carcinoma (RCC) drug candidates, marine-derived compounds piericidin A (PA) and glucopiericidin A (GPA) exhibit hepatotoxicity in renal carcinoma xenograft mice. Proteomics and transcriptomics reveal the hepatotoxicity related with cholesterol disposition since RCC is characterized by cholesterol accumulation. PA/GPA aggravate hepatotoxicity in high-cholesterol diet (HCD)-fed mice while exhibiting no toxicity in chow diet-fed mice. High cholesterol accumulation in liver is liver X receptor (LXR)-mediated cytochrome P450 family 7 subfamily a member 1 (CYP7A1) depression and low-density lipoprotein receptor (LDLR) activation. The farnesoid X nuclear receptor (FXR) is also depressed with a downregulated target gene OSTα. Different from PA directly combined with LXRα as an inhibitor, GPA exists as a prodrug in the liver and exerts toxic effects due to transformation into PA. Surface plasmon resonance (SPR) and docking results of 17 piericidins illustrate that glycosides exert no LXRα binding activity. A longer survival time of GPA-treated mice indicates that further exploration in anti-RCC drug research should focus on reducing glycosides transformed into PA and concentrating in the kidney tumor rather than the liver for lowering the risk of hepatotoxicity.


Subject(s)
Cholesterol, Dietary/adverse effects , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Liver X Receptors/metabolism , Pericarditis/metabolism , Animals , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Pericarditis/chemically induced , Pericarditis/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
5.
Chem Res Toxicol ; 33(7): 1798-1808, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32538071

ABSTRACT

Emodin is the main toxic component in Chinese medicinal herbs such as rhubarb. Our previous studies demonstrated that genetic polymorphisms of UDP-glucuronosyltransferase 2B7 (UGT2B7) had an effect on the glucuronidation and detoxification of emodin. This study aimed to reveal the transcriptional regulation mechanism of UGT2B7 on emodin glucuronidation and its effect on toxicity. Emodin glucuronic activity and genome and transcriptome data were obtained from 36 clinical human kidney tissues. The genome-wide association studies (GWAS) identified that four single nucleotide polymorphisms (SNPs) (rs6093966, rs2868094, rs2071197, and rs6073433), which were located on the hepatocyte nuclear factor 4α (HNF4A) gene, were significantly associated with the emodin glucuronidation (p < 0.05). Notably, rs2071197 was significantly associated with the gene expression of HNF4A and UGT2B7 and the glucuronidation of emodin. The gene expression of HNF4A showed a high correlation with UGT2B7 (R2 = 0.721, p = 5.83 × 10-11). The luciferase activity was increased 7.68-fold in 293T cells and 2.03-fold in HepG2 cells, confirming a significant transcriptional activation of UGT2B7 promoter by HNF4A. The knockdown of HNF4A in HepG2 cells (36.6%) led to a significant decrease of UGT2B7 (19.8%) and higher cytotoxicity (p < 0.05). The overexpression of HNF4A in HepG2 cells (31.2%) led to a significant increase of UGT2B7 (24.4%) and improved cell viability (p < 0.05). Besides, HNF4A and UGT2B7 were both decreased in HepG2 cells and rats after treatment with emodin. In conclusion, emodin used long term or in high doses could inhibit the expression of HNF4A, thereby reducing the expression of UGT2B7 and causing hepatotoxicity.


Subject(s)
Emodin/pharmacokinetics , Glucuronides/metabolism , Glucuronosyltransferase/genetics , Hepatocyte Nuclear Factor 4/genetics , Animals , Cell Line , Emodin/pharmacology , Genome-Wide Association Study , Glucuronosyltransferase/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Humans , Kidney/metabolism , Male , Polymorphism, Single Nucleotide , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...